

Upcoming PyUNO improvements in LibreOffice 5.1

Matthew Francis

Introduction

The state of PyUNO as of LibreOffice 5.0
Implemented near the dawn of Python, barely changed since
Very little syntactic sugar
Generally a lot like writing Java
Slower than it should be – especially from a remote process

What I hope to achieve with the new changes for 5.1
Make working with UNO in Python feel more Pythonic

→ Less verbose – make use of available Python syntax
Make it faster than before
Personal goal – make PyUNO more appropriate as a base to
build automated UI tests on

3
LibreOffice Aarhus 2015 Conference Presentation

New features in PyUNO for 5.1

Collection interfaces

Indexed array interfaces
com::sun::star::container::XIndexAccess
com::sun::star::container::XIndexReplace
com::sun::star::container::XIndexContainer

What's changed?
UNO objects implementing these interfaces now behave
like Python lists

Collection interfaces

Whenever you see method calls like the following, there is a
simpler way to do it:

count = obj.getCount() ⇒ count = len(obj)

Value = obj.getByIndex(0) ⇒ value = obj[0]

obj.replaceByIndex(0, value) ⇒ obj[0] = value

obj.insertByIndex(0, value) ⇒ obj[0:0] = value

obj.removeByIndex(0) ⇒ del obj[0]

Iteration and testing value presence also works:
for value in obj: …

if value in obj: …

...but the if – in syntax is probably useful only rarely for indexed collections
(and not efficient)

Collection interfaces

Example: iterating over document footnotes – the old way
doc = … # load a text document

count = doc.Footnotes.getCount()

for i in range(count):

footnote = doc.Footnotes.getByIndex(i)

print(footnote.String)

Example: iterating over document footnotes – the new way
doc = … # load a text document

count = len(doc.Footnotes)

for i in range(len):

print(doc.Footnotes[i].String)

Or even better, if the index isn't important:
doc = … # load a text document

for footnote in doc.Footnotes:

print(footnote.String)

Other examples of XIndex*
Text document

Redlines
Endnotes

Spreadsheet
Charts
NamedRanges

Collection interfaces

Associative array interfaces
com::sun::star::container::XNameAccess
com::sun::star::container::XNameReplace
com::sun::star::container::XNameContainer

What's changed?
UNO objects implementing these interfaces now behave
like Python dicts

Collection interfaces

Whenever you see method calls like the following, there is a
simpler way to do it:

Value = obj.getByName(key) ⇒ value = obj[key]

if obj.hasByName(key): … ⇒ if key in obj: …

obj.replaceByName(key, value) ⇒ obj[key] = value

obj.insertByName(key, value) ⇒ obj[key] = value

obj.removeByName(key) ⇒ del obj[key]

Iteration and testing value presence also works – for keys:
for key in obj: …

if key in obj: …

Different from indexed collections – the for and in operators tests for keys, not values

Collection interfaces

Example: Navigate elements of a spreadsheet – the old way
spr = … # load a spreadsheet

sheet = spr.Sheets.getByName('Sheet1')

range = sheet.NamedRanges.getByName('MyRange')

Collection interfaces

Example: Navigate elements of a spreadsheet – the new way
spr = … # load a spreadsheet

sheet = spr.Sheets['Sheet1']

range = sheet.NamedRanges['MyRange']

Collection interfaces

What if an object supports both XIndex* and XName* ?
You can access it using both obj[0] and obj['Name']

However, iterating yields keys rather than values
Like a Python dict

Examples:
Text document

TextTables
EmbeddedObjects
GraphicObjects

Collection interfaces

Enumerations
com::sun::star::container::XEnumerationAccess
com::sun::star::container::XEnumeration

What's changed
You can iterate over UNO enumerations the Python way

Collection interfaces

Whenever you see method calls like the following, there is a
quicker way to do it:
enm = obj.createEnumeration()

while enm.hasMoreElements():

value = enm.nextElement()

...

Instead, do:
for value in obj:

...

Collection interfaces

Example: iterating over document paragraphs – the old way
doc = … # Load a text document

enm = doc.Text.createEnumeration()

while enm.hasMoreElements():

paragraph = enm.nextElement()

print(paragraph.String)

Collection interfaces

Example: iterating over document paragraphs – the new way
doc = … # Load a text document

for paragraph in doc.Text:

print(paragraph.String)

Or use a Python style explicit iterator:
doc = … # Load a text document

itr = iter(doc.Text)

paragraph = next(itr)

print(paragraph.String)

Or flatten the text so it can be accessed by index:
doc = … # Load a text document

paragraphs = list(doc.Text)

print(paragraphs[0].String)

Obviously this can be inefficient for a large document – but extremely convenient in the
context of e.g. a short test when there are only a few paragraphs

Elimination of explicit Any

Certain method calls need to be passed an Any with a sequence of a
specific type
Most commonly this occurs with collection interfaces
The syntax to deal with this in PyUNO was obscure and annoying

Example: creating a document index
doc = … # Load a text document

index = doc.createInstance("com.sun.star.text.ContentIndex");

uno.invoke(index.LevelParagraphStyles, \

"replaceByIndex", (0, uno.Any("[]string", ('Caption',))))

PyUNO can now infer the type required by the collection automatically
index.LevelParagraphStyles[0] = ('Caption',)

List and iterator arguments

Wherever a UNO API expects a sequence, a Python list or iterator can
now be passed.
This enables the use of list comprehensions and generator expressions
for method calls and property assignments.

Example: Populate a text table

doc = … # Load a text document

tbl = doc.createInstance('com.sun.star.text.TextTable')

tbl.initialize(10,10)

doc.Text.insertTextContent(doc.CurrentController.ViewCursor, tbl, False)

Assign numbers 0..99 to the cells using a generator expression

tbl.Data = ((y for y in range(10*x,10*x + 10)) for x in range(10))

List and iterator arguments

Tolerant struct initialisation

Initialising a UNO struct previously required all members to be set, or
none

Example: PropertyValue – frequently, only name and value are needed
from com.sun.star.beans import PropertyValue

prop1 = PropertyValue()

prop1.Name = 'foo'

prop1.Value = 'bar'

prop2 = PropertyValue('foo', 0, 'bar', 0)

prop3 = PropertyValue(Name='foo', Handle=0, Value='bar', State=0)

This requirement is now relaxed when all arguments are named
prop4 = PropertyValue(Name='foo', Value='bar')

Cell ranges

A custom behaviour is applied to cell range objects
com::sun::star::table::XCellRange

This is different to the other changes – the collection
interfaces are generic, this is a higher level API

However, it's one that is widely used and could benefit from
some syntactic sugar

Applies to:
Sheets in Calc spreadsheets
Writer text tables
Subset cell ranges created on these

Cell ranges

Existing syntax
cell = cellrange.getCellByPosition(col, row)

rng = cellrange.getCellRangeByPosition(left, top, right, bottom)

rng = cellrange.getCellRangeByName(name)

New syntax – access like a two dimensional array
cell = cellrange[0,0] # Access cell by indices

rng = cellrange[0,1:2] # Access cell range by index,slice

rng = cellrange[1:2,0] # Access cell range by slice,index

rng = cellrange[0:1,2:3] # Access cell range by slices

rng = cellrange['A1:B2'] # Access cell range by descriptor

rng = cellrange['Name'] # Access cell range by name

Cell ranges

Note that the indices used are in Python/C order
These pairs are equivalent:

row r, column c

cell = cellrange[r,c]

cell = cellrange.getCellByPosition(c,r)

rows t to b, columns l to r

rng = cellrange[t:b,l:r]

rng = cellrange.getCellRangeByPosition(l,t,r-1,b-1).

Cell ranges

Objects which also implement com::sun::star::table::XColumnRowRange
support negative indices (from-end indexing) and the below syntax for
referencing whole rows and columns

Calc spreadsheet sheets and cell ranges created upon these support
this interface
Writer text tables unfortunately don't

rng = cellrange[0] # Access cell range by row index

rng = cellrange[0,:] # Access cell range by row index

rng = cellrange[:,0] # Access cell range by column index

Import constants by group name

Previously, UNO constants had to be imported individually
Example
from com.sun.star.accessibility.AccessibleRole import MENU_BAR

from com.sun.star.accessibility.AccessibleRole import DIALOG

from com.sun.star.accessibility.AccessibleRole import PUSH_BUTTON

Constant groups can now be imported as a whole
from com.sun.star.accessibility import AccessibleRole

Now you can reference AccessibleRole.MENU_BAR etc.

Object hashability

UNO objects should now have stable hash values
This allows them to be safely used as keys for collections
s = set()
s[obj] = 1
...
Later, we get the same object from UNO again
This only works if the object has a stable hash
del s[obj]

What's that “should” doing there?
Handle with care, don't rely on this if possible
Cases where this is useful should be rare

Performance improvements

Every time a UNO object is passed to PyUNO, we have to perform
introspection on it to find out information about its methods and
properties
In the case of remote (out of process) PyUNO, this means making inter-
process calls
Inter-process calls are slow, so the fewer the better
We can't avoid making at least a few calls
Up to LibreOffice 5.0 there was a bug which meant there were up to 50
inter-process calls for each object

Predictably this wasn't very fast
Further optimisations made to eliminate unnecessary calls and make
some others lazy (only when actually needed, not for every object)
Now it's much faster remotely and a little faster locally

Fallout

A major aim of these changes was not to break existing code
Successful? Almost

Caused an issue with LibreLogo –
commit 181a7b27acf29a2728be5a0eb3696796bc7df3da

Now that some PyUNO objects behave like proper Python collections,
they have truth values that depend on whether or not they're empty
The LibreLogo code used a variable that was either 0 or a PyUNO
object, and expected the two choices to be always False or True
respectively

Mea culpa – didn't expect that
Unfortunately no easy way to work around

Questions?

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License
(unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective logos
and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.

Thank you

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.documentfoundation.org/TradeMark_Policy

	Slide 1
	Slide 2
	First Slide Example
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

