
www.CollaboraOffice.com

tomaz.vajngerl@collabora.co.uk

Collabora Productivity

Tomaž Vajngerl

@CollaboraOffice

VCL OpenGL backend performance 
improvements 



Work on VCL OpenGL 
backend started in 2014 

(LibreOffice 4.4)



In LibreOffice 5.1 most 
annoying render bugs are 

fixed



First make it work, then make it fast

Usual misconception: 
“It is hardware accelerated so it is fast.”



First make it work, then make it fast

However rendering on GPU is different than how 2D 
rendering is done with typical “canvas” style API.



Rendering with GPU

● Everything is composed of triangles

● No immediate drawing (performance hit)

● Upload objects (vertices, textures) to the 
GPU memory and reuse

● Programmable rasterization (With fragment 
shaders)



Performance 
improvements



Native control cache

● Native controls are rendered to a buffer, then 
uploaded as a texture
● Expensive on each draw

● Some controls never change, some change 
when resizing
● We can cache them as textures



Texture atlas to increase texute 
drawing performance

● Use one texture for more images

● Packing
● Use a simple algorithm – divide texture to 

equally sized regions

● Highly dynamic but wastes space in texture

● Useful for icons



Text rendering

● No support to draw text on GPU so we must 
render text to texture and upload – slow

● Instead render individual glyphs to texture 
atlas and reuse when drawing

● Draw more glyphs of them with one draw 
call



Text rendering

ABRACADABRA

ABR
C
D



Decreasing state changes

● Track bound textures – don’t unbind if not 
necessary

● Track state of GL_SCISSOR_TEST, 
GL_STENCIL_TEST, GL_BLEND_TEST and 
don’t enable/disable if already 
enabled/disabled

● Don’t change glViewport and glScissor if it 
already is set correctly



Combine shaders

● Shader program switching is changing state

● Combine shaders into bigger shaders
● Non-texture drawing

● Texture drawing

● Shaders for scaling, gradient drawing, etc.

● Switch between modes with a shader 
parameter (and switch or if inside shader)



Polyline drawing with GPU

● Bezier curves

● Open / closed

● Line ending

● Line joins



Polyline drawing with GPU

● Trapezoid decomposition for a polyline on 
the CPU is expensive – we can draw lines on 
GPU

● Anti-aliasing using shaders

● Also used for line drawing, polypolygon and 
polygon outline and anti-aliasing



Polyline drawing with GPU

Feather (0.5 pixel)

½ Line width

Feather (0.5 pixel)

½ Line width

Extrusion vector



Batching & combining

● Decrease GPU overhead – reduce draw calls

● Batch drawing to be able to reorder and 
combine same draw actions

● Current state: 

● (Poly)Polygon, Rectangle, (Poly)line and 
text rendering is batched.

● Gradient, most texture rendering is not 
(yet). 



Batching & combining

Draw Line (10, 20, 20, 30)

Draw Rect (40, 10, 50, 20)

Draw Rect (10, 10, 20, 20)

Draw Line (30, 30, 30, 10)

Draw Rect (0, 0, 60, 60)



Batching & combining

Draw Line (10, 20, 20, 30)

Draw Rect (40, 10, 50, 20)

Draw Rect (10, 10, 20, 20)

Draw Line (30, 30, 30, 10)

Draw Rect (0, 0, 60, 60)

Overlap



Batching & combining

Draw Line (10, 20, 20, 30)

Draw Rect (40, 10, 50, 20)

Draw Rect (10, 10, 20, 20)

Draw Line (30, 30, 30, 10)

Draw Rect (0, 0, 60, 60)

Overlap



Batching & combining

Draw Line (10, 20, 20, 30)

Draw Rect (40, 10, 50, 20)

Draw Rect (10, 10, 20, 20)

Draw Line (30, 30, 30, 10)

Draw Rect (0, 0, 60, 60)

Overlap

Combine

Combine



Batching & combining

Draw Line (10, 20, 20, 30)
Draw Line (30, 30, 30, 10)

Draw Rect (10, 10, 20, 20)
Draw Rect (40, 10, 50, 20)

Draw Rect (0, 0, 60, 60)

Overlap



Backend Testing



Visual backend test

● Draw primitives to a virtual device
● Check pixels if they match
● Pass, Fail, Pass with quirks



Visual backend test

● For finding rendering bugs in 
existing backends

● Helpful to code new backends
● First run test for OpenGL driver 

(when using OpenGL test)



Future improvements



(Filled) Polygon drawing with GPU

● Draw with help of stencil buffer which covers

● But this is mostly expensive

● Not implemented – generally better to do it 
on the CPU



Bézier curves

● Curve Rendering using GPU - Loop Blinn 
algorithm

● Alternative: do decomposition with 
geometry shader 



Make API more GPU frendly

● Scenegraph API for VCL

● Tree of objects, we can optimize for a 
rendering target

● Matrix transform instead of modifying 
coordinates

● Rendering thread



Thanks


